# On Surface Interpolation 

Franz-Jürgen Delvos<br>Universität Siegen, Lehrstuhl für Mathematik I<br>D-11 Siegen 11, Germany<br>Communicated by Arthur Sard

## Introduction

It is the aim of this paper to study the method of surface interpolation introduced by Coons [3] and Gordon [5] in the abstract setting of optimal interpolation in the sense of Sard [7, 8]. As an illustration, blended linear interpolation will be considered (Gordon [4], Birkhoff and Gordon [2]).

## 1. Optimal Interpolation

The theory of optimal interpolation as a special case of Sard's theory of optimal approximation [7, 8] is based on the tuple

$$
\begin{equation*}
(X, Y, Z, U, F) . \tag{1.1}
\end{equation*}
$$

Here $X, Y, Z$ are complex (separable) Hilbert spaces and

$$
U: X \rightarrow Y, \quad F: X \rightarrow Z
$$

denote continuous linear mappings. Let us suppose that the completeness condition holds (Sard [8]). Thus, the bilinear form

$$
\begin{equation*}
((x, y))=(U x, U y)+(F x, F y) \quad(x, y \in X) \tag{1.2}
\end{equation*}
$$

is a scalar product on $X$, which induces the original topology on $X$.
The problem of optimal interpolation reads as follows.
For every $x \in X$ determine $\xi \in X$ such that

$$
\begin{equation*}
F \xi=F x, \quad\|U \xi\| \leqslant\|U y\| \quad(F y=F x), \quad(y \in X) . \tag{1.3}
\end{equation*}
$$

Following Sard $[7,8]$, we construct the orthogonal projector $P$ on $(X ;((.,))$.$) defined by$

$$
\begin{equation*}
\operatorname{Im}(P)=\operatorname{Ker}(F)^{\perp} \tag{1.4}
\end{equation*}
$$

Then the element

$$
\xi=P x
$$

is the unique solution of (1.3). The operator $P$ is called the spline interpolation projector corresponding to (1.1).

## 2. Abstract Surface Interpolation

The basic implicit tool of the method of surface interpolation of Coons and Gordon is the tensor product method. For tensor products of Hilbert spaces and linear mappings we refer to Berezanskij [1, pp. 39-50].

Let us consider two problems of optimal interpolation that are described by

$$
\left(X_{j}, Y_{j}, Z_{j}, U_{j}, F_{j}\right) \quad(j=1,2)
$$

Denote by

$$
P_{j} \quad(j=1,2)
$$

the corresponding spline interpolation projectors and let

$$
I_{j} \quad(j=1,2)
$$

denote the identity mapping of $X_{j}(j=1,2)$. Now we are able to state the problem of abstract surface interpolation:

For every $x \in X_{1} \otimes X_{2}$ determine $\xi \in X_{1} \otimes X_{2}$ such that

$$
\begin{gathered}
F_{1} \otimes I_{2}(\xi)=F_{1} \otimes I_{2}(x), \quad I_{1} \otimes F_{2}(\xi)=I_{1} \otimes F_{2}(x), \\
\left\|U_{1} \otimes U_{2}(\xi)\right\| \leqslant\left\|U_{1} \otimes U_{2}(y)\right\|, \\
F_{1} \otimes I_{2}(y)=F_{1} \otimes I_{2}(x), \quad I_{1} \otimes F_{2}(y)=I_{1} \otimes F_{2}(x) \quad\left(y \in X_{1} \otimes X_{2}\right) .
\end{gathered}
$$

It is clear that the problem of abstract surface interpolation can be considered as a problem of optimal interpolation which is characterized by the tuple

$$
\begin{equation*}
\left(X_{1} \otimes X_{2}, Y_{1} \otimes Y_{2}, Z_{1} \otimes X_{2} \times X_{1} \otimes Z_{2}, U_{1} \otimes U_{2}, F_{1} \otimes I_{2} \times I_{1} \otimes F_{2}\right) \tag{2.1}
\end{equation*}
$$

More precisely, we have the following

Theorem. Suppose that

$$
\begin{equation*}
\operatorname{Im}\left(F_{j}\right)=Z_{j} \quad(j=1,2) \tag{2.2}
\end{equation*}
$$

Then for every $x \in X_{1} \otimes X_{2}$ the element

$$
\begin{equation*}
\xi=\left(P_{1} \otimes I_{2}+I_{1} \otimes P_{2}-P_{1} \otimes P_{2}\right)(x) \tag{2.3}
\end{equation*}
$$

is the unique solution of the problem of abstract surface interpolation.

Proof. First let us verify the completeness condition (1.2) for the tuple (2.1). This condition is a direct consequence of the scalar product of the tensor product of $\left(X_{1} ;((.,)).\right)$ and $\left(X_{2} ;((.)),\right)$, since we have for any pair $x, y \in X_{1} \otimes X_{2}$ :

$$
\begin{aligned}
&(x, y)=\left(F_{1} \otimes F_{2}(x), F_{1} \otimes F_{2}(y)\right)+\left(F_{1} \otimes U_{2}(x), F_{1} \otimes U_{2}(y)\right) \\
&+\left(U_{1} \otimes F_{2}(x), U_{1} \otimes\right. \\
&\left.F_{2}(y)\right)+\left(U_{1} \otimes U_{2}(x), U_{1} \otimes U_{2}(y)\right) \\
&\left(F_{1} \otimes I_{2}(x), F_{1} \otimes I_{2}(y)\right)=\left(F_{1} \otimes F_{2}(x), F_{1} \otimes F_{2}(y)\right) \\
&+\left(F_{1} \otimes U_{2}(x), F_{1} \otimes U_{2}(y)\right) \\
&\left(I_{1} \otimes F_{2}(x), I_{1} \otimes F_{2}(y)\right)=\left(F_{1} \otimes F_{2}(x), F_{1} \otimes F_{2}(y)\right) \\
&+\left(U_{1} \otimes F_{2}(x), U_{1} \otimes F_{2}(y)\right) \\
&((x, y))=(x, y)+\left(F_{1} \otimes F_{2}(x), F_{1} \otimes F_{2}(y)\right)
\end{aligned}
$$

Observe that the scalar product of the tensor product of $\left(X_{1} ;((.,)).\right)$ and $\left(X_{2} ;((.,)).\right)$ and the scalar product of the tensor product of $\left(X_{1} ;(.,).\right)$ and ( $X_{2} ;(.,$.$) ) induce equivalent norms. Thus the completeness condition$ holds in both cases.

The more difficult part of the proof is to show that the operator

$$
P_{1} \otimes I_{2}+I_{1} \otimes P_{2}-P_{1} \otimes P_{2}
$$

is the spline interpolation projector corresponding to (2.1). Taking into account that

$$
\begin{gathered}
F_{j} P_{j}=F_{j} \quad(j=1,2), \\
P_{1} \otimes I_{2}+I_{1} \otimes P_{2}-P_{1} \otimes P_{2}=I_{1} \otimes I_{2}-\left(I_{1}-P_{1}\right) \otimes\left(I_{2}-P_{2}\right),
\end{gathered}
$$

it follows for every $x \in X_{1} \otimes X_{2}$ (for $\xi$ see (2.3)):

$$
(\xi, x-\xi)=((\xi, x-\xi))=\left(U_{1} \otimes U_{2}(\xi), U_{1} \otimes U_{2}(x-\xi)\right)=0 .
$$

Thus $P_{1} \otimes I_{2}+I_{1} \otimes P_{2}-P_{1} \otimes P_{2}$ is an orthogonal projector on $\left(X_{1} \otimes X_{2} ;((.,)).\right)$ that satisfies

$$
\begin{aligned}
& \left(F_{1} \otimes I_{2}\right)\left(P_{1} \otimes I_{2}+I_{1} \otimes P_{2}-P_{1} \otimes P_{2}\right)=F_{1} \otimes I_{2}, \\
& \left(I_{1} \otimes F_{2}\right)\left(P_{1} \otimes I_{2}+I_{1} \otimes P_{2}-P_{1} \otimes P_{2}\right)=I_{1} \otimes F_{2} .
\end{aligned}
$$

Hence

$$
\operatorname{Ker}\left(P_{1} \otimes I_{2}+I_{1} \otimes P_{2}-P_{1} \otimes P_{2}\right) \subset \operatorname{Ker}\left(F_{1} \otimes I_{2} \times I_{1} \otimes F_{2}\right)
$$

The only thing we have still to prove is to show that for every $x \in X_{1} \otimes X_{2}$ the relations

$$
F_{1} \otimes I_{2}(x)=0, \quad I_{1} \otimes F_{2}(x)=0
$$

imply

$$
\left(P_{1} \otimes I_{2}+I_{1} \otimes P_{2}-P_{1} \otimes P_{2}\right)(x)=0
$$

If we take into account (1.4) and (2.2), an application of Banach's theorem yields the existence of the continuous linear mappings

$$
F_{j}^{-1}: Z_{j} \rightarrow X_{j} \quad(j=1,2)
$$

that satisfy

$$
F_{j}^{-1} F_{j}=P_{j} \quad(j=1,2)
$$

Thus we have

$$
\left(F_{1}^{-1} \otimes I_{2}\right)\left(F_{1} \otimes I_{2}\right)=P_{1} \otimes I_{2}, \quad\left(I_{1} \otimes F_{2}^{-1}\right)\left(I_{1} \otimes P_{2}\right)=I_{1} \otimes P_{2}
$$

Hence the relations

$$
F_{1} \otimes I_{2}(x)=0, \quad I_{1} \otimes F_{2}(x)=0
$$

imply

$$
P_{1} \otimes I_{2}(x)=0, \quad I_{1} \otimes P_{2}(x)=0
$$

Since we have

$$
\left(P_{1} \otimes I_{2}\right)\left(I_{1} \otimes P_{2}\right)=P_{1} \otimes P_{2}
$$

we obtain

$$
\left(P_{1} \otimes I_{2}+I_{1} \otimes P_{2}-P_{1} \otimes P_{2}\right)(x)=0
$$

Remark. Note that the projector $P_{1} \otimes I_{2}+I_{1} \otimes P_{2}-P_{1} \otimes P_{2}$ is the Boolean sum of the projectors $P_{1} \otimes I_{2}$ and $I_{1} \otimes P_{2}$. For a further discussion of this aspect we refer to [6].

## 3. An Example

One way of describing linear interpolation as optimal interpolation is based on the choice of the tuple

$$
\begin{equation*}
\left(W^{1.2}(J), L^{2}(J), C^{2}, D, \epsilon_{0} \times \epsilon_{1}\right) \tag{3.1}
\end{equation*}
$$

$\left(J=[0,1], W^{1,2}(J)\right.$ a Sobolev space, $\epsilon_{0}, \epsilon_{1}$ Dirac measures). In this connection the linear interpolant of the function $f \in W^{1,2}(J)$,

$$
\xi(s)=f(0)(1-s)+f(1) s
$$

is the unique function in the set of functions $g \in W^{1,2}(J)$ satisfying

$$
g(0)=f(0), \quad g(1)=f(1)
$$

which minimizes

$$
\int_{J}|D g(s)|^{2} d s
$$

The blended linear interpolation [2, 4] is obtained by choosing (3.1) twice. An application of the general procedure of Section 2 yields the following concrete result (see also [4, 9]).

The blended linear interpolant of $f \in W^{1,2}(J) \otimes W^{1,2}(J)$,

$$
\begin{aligned}
\xi(s, t)= & f(0, t)(1-s)+f(1, t) s+f(s, 0)(1-t)+f(s, 1) t \\
& -f(0,0)(1-s)(1-t)-f(0,1)(1-s) t \\
& -f(1,0) s(1-t)-f(1,1) s t
\end{aligned}
$$

is the unique function among all $g \in W^{1,2}(J) \otimes W^{1,2}(J)$ satisfying

$$
\begin{array}{ll}
g(., 0)=f(., 0), & g(., 1)=f(., 1) \\
g(0, .)=f(0, .), & g(1, .)=f(1, .)
\end{array}
$$

which minimizes

$$
\int_{J} \int_{J}\left|D_{x} D_{y} g(s, t)\right|^{2} d s d t
$$

## References

1. Ju. M. Berezanskij, "Expansions in Eigenfunctions of Selfadjoint Operators," American Mathematical Society, Providence, R.I., 1968.
2. G. Birkhoff and W. J. Gordon, The draftman's and related equations, J. Approximation Theory 1 (1968), 199-108.
3. S. A. Coons, Surfaces for computer-aided design of space forms, Project MAC report, 1964. Revised to MAC-TR-41, June 1967. Available from CFSTI, Sills Building, 5285, Port Royal Road, Sprinfield, VA 22151.
4. W. J. Gordon, Spline-blended interpolation through curve networks, J. Math. Mech. 18 (1969), 931-952.
5. W. J. Gordon, "Blending function" methods of bivariate and multivariate interpolation and approximation, SIAM J. Numer. Anal. 8 (1971), 158-177.
6. W. J. Gordon, Distributive lattices and the approximation of multivariate functions, in "Approximation with Special Emphasis on Splines" (I. J. Schoenberg, Ed.), pp. 223-277, Academic Press, New York, 1969.
7. A. Sard, Optimal approximation, J. Functional Analysis 1 (1967), 222-244; 2 (1968), 368-369.
8. A. Sard, Approximation based on nonscalar observations, J. Approximation Theory 8 (1973), 315-334.
9. A. Sard, Instances of generalized splines, in "Spline-Funktionen, Vorträge und Aufsätze" (K. Böhmer, G. Meinardus, and W. Schempp, Eds.), Bibliographisches Institut, Mannheim/Wien/Zürich, 1974.
